S-S Bond Cleavage of Polymerization Resistant 1,S-Dithiolanes by Acetylides: Intrinsic Reactivity of Enzyme-bound Lipoic Acid toward Stable, Localized Carbanions

Masato Tazaki,*^a Masayoshi Kumakura,^a Shizuo Nagahama[,] and Makoto Takagi^b

^a*Department of Industrial Chemistry, Kumamoto Institute of Technology, lkeda 4-22- 1, Kumamoto 860, Japan b Department of Chemical Science and Technology, Faculty of Engineering, Kyushu University, Hakozaki 6- 10- I, Higashiku, Fukuoka 8 12, Japan*

The S-S bond of polymerization-resistant 1,2-dithiolanes 2 was cleaved cleanly by acetylides 4, giving the corresponding ring-opened products 5 in aprotic THF (quenched as silylsulfide **6)** and their re-cyclized products **6,7-dihydro-1,4-dithiepins 3** in protic ButOH in excellent yields. The reactivity of 2 is discussed in relation to the reductive acylation of the enzyme-bound lipoic acid ($Lip-E_2$).

Coenzyme lipoic acid¹ (Lip) is covalently bound to the pyruvate dehydrogenase complex and reductively acetylated at the **start** of the Krebs cycle by hydroxyethylidenethiamine diphosphate (HET), **an** active form of the coenzyme thiamine diphosphate (TDP). The similar reductive succinylation is involved in the 2-oxoglutarate dehydrogenase complex within the Krebs cycle. Two controversial mechanisms were proposed for the reductive acetylation of $Lip-E_2$ (Scheme 1): one involves a redox process producing acetyl TDP (Ac-TDP) and dihydro Lip- E_2 , which combine to give the tetrahedral intermediate A (Route 1, redox mechanism²). The other mechanism involves simple S-S cleavage of $Lip-E_2$ by HET to produce directly the same intermediate A (Route 2, carbanion mechanism3). The detection of Ac-TDP in the *in vitro* enzyme system4 and the related results using pyruvate dehydrogenase complex⁵ may be considered significant evidence for the redox mechanism.

Since the rapid equilibrium between the intermediate A and Ac-TDP (plus dihydro Lip-E₂) was well demonstrated enzymologically,5 the detection of Ac-TDP does not necessarily mean the reaction proceeds *via* the Ac-TDP as a transient intermediate. Therefore, the reactivity of $Lip-E_2$ towards carbon nucleophiles as well as its redox properties should be elucidated in order to resolve the enzyme mechanism.

Non-enzymic lipoyl derivatives may have structures closely related to Lip-Ez, but they are not suitable as model compounds, since they are highly polymerizable and are much less reactive towards carbon nucleophiles⁶ than expected from their intrinsic ring-strain.' However, polymerization resistant 1,2-dithiolanes **2** are highly reactive towards the carbon nucleophile EtMgBr in diethyl ether,⁸ and they are the most appropriate models for estimating the chemical properties of Lip-E₂.

HET is a carbanion stabilized by the thiazolium ring.9 **Thus,** we were interested in the behaviour of the model 1,2-dithiolanes **2** towards a stable carbanion of phenylacetylene **1a** $(pK_a 23.2)^{10}$ in the protic solvent tert-butyl alcohol. The observed result was not simple ring opening but rather novel vinylene insertion into the cyclic disulfides **2** (see Scheme 2).

In a typical experiment, a solution of **4,4-diethyl-l,2-dithiol**ane **2a (3** mmol), ethynylbenzene **la** (4 mmol) and BuQK (1 mmol) in Bu^{OH} (10 ml) was stirred under argon at room temperature for 1 d. After the mixture was diluted with water and extracted with hexane, the product 6,6-diethyl-2-phenyl-6,7-dihydro-1,4-dithiepin **3a** was obtained by a Kugelrohr distillation in excellent yield (97%).

The ring enlargement by vinylene insertion is not well documented so far.¹¹ Other polymerization resistant 1,2-dithiolanes reacted similarly with various alkyl and aryl acetylenes to give the corresponding dihydro-1,4-dithiepins in high yields as summarized in Table 1. Since **no** by-product was found in the mixture, the product was readily obtained by simple distillation in high yield and purity. The reaction could provide a facile route to the cyclic **cis-l,2-bis(alkylthio)ethenes,** whose role in organic synthesis as masked acyl anion equivalents have not yet been fully developed.12

Scheme **2**

Scheme **1** Mechanisms proposed for reductive acetylation of enzyme-bound lipoic acid by **hydroxyethylidenethiamine** diphosphate. **Route** 1: redox mechanism: Route 2: carbanion mechanism: **Ez:** dihydrolipoamide acetyltransferase (EC 2.3.1.12); **HET: hydroxyethylidenethiamine** diphosphate: Lip-Ez: Lipoic acid bound to **Ez;** TDP: thiamine diphosphate; Ac-TDP: acetyl TDP.

3

A catalytic amount of tert-butoxide was required for the reaction but excess methoxide, ethoxide and DBU were not effective. The yield of **3** was unaffected by the presence of oxygen (dry air) and hydroquinone, showing that no radical nor electron-transfer process is involved. The strain-assisted nature of the reaction was typically shown by the fact that the linear disulfide BuSSBu was completely unreactive under similar conditions. The polymerization-resistant nature⁸ of the model dithiolanes **2** is also important, for highly polymerizable lipoic acid and lipoamide gave only unidentifiable polymeric materials under similar conditions.

The reaction mechanism shown in Scheme 3 involves the initial ring-opening of **2** by the acetylide **4** and the subsequent re-cyclization of the intermediate **5.** This was derived from the following evidence. (i) Deuterium in the starting acetylene PhCCD $(2H_1]$ -**la**) was lost much faster than the product **3a** was produced. (ii) The intermediate **5** was proved to be stable in an aprotic solvent THF as shown in Scheme **4: 5a** could be prepared in *situ* by reaction of **2a** with lithium phenylacetylide **4a,** and then trapped as a silyl sulfide *6.* (iii) Both the addition of MeOH to the THF solution of **5a (4a** plus **2a)** and the regeneration of **5a** in MeOH by the desilylation of *6* resulted in the rapid formation of **3a** (Scheme **4).**

Table 1 Reaction of 1,2-dithiolanes 2 with acetylenes 1 in Bu^tOH^a

\mathbf{R}^1	R^2, R^3	$R1$, $R2$, $R3$	Yield $(\%)$
1a Ph	2a Et. Et	3a Ph, Et, Et	97
b H ^b	a Et. Et	b H, Et, Et	95
bH	b Et, Me	c H, Et, Me	96
bН	c (CH ₂),	d H, (CH_2) ,	94
bH	d (CH ₂) ₄	e H, $(CH_2)_4$	92
c Etb.c	a Et. Et	f Et, Et, Et	93
d MeOCH ₂ (MOM)	c (CH_2)	g MOM, (CH_2) ,	92
e $C_5H_{11}c$	a Et. Et	$h C5H11$, Et, Et	94

^{*a*} Reaction described in Scheme 2. Conditions: $[1]_0 = 0.3$ mol dm⁻³, $[2]_0$ $= 0.4$ mol dm⁻³, $[Bu^tOK]_0 = 0.1$ mol dm⁻³, $Bu^tOH (10 ml)$ at room temp. for 1 d unless otherwise noted. *b* Excess gaseous alkynes lb,c were supplied from gas cylinder (1 atm). ϵ Enforced conditions: $[Bu^tOK]_0 = 0.2$ mol dm-3, reaction for 2 d.

Scheme **3** Mechanism proposed for formation of 1,4-dithiepine 3

Scheme 4 Trapping intermediate **5a** as silyl sulfide 6 and its desilylation to 3a. Yield of 6 from 2a and 4a was 95%. Yields of 3a from *6* by two desilylations were quantitative.

These results show that a class of stable carbanions can cleave the S-S bond of 1,2-dithiolanes regardless of their method of generation or whether protic or aprotic solvents are used. This is the first observation that a stable carbanion cleaves the S-S bond of 1,2-dithiolane ring in a quantitative manner. Thus, $Lip-E₂$ is much more reactive to stable carbanions than previous studies suggested.6 The reactivity is strain-accelerated and in line with the carbanion mechanism3 proposed for the reductive acetylation of Lip-E₂.

It should not be overlooked that the S-S cleavage proceeds without electron transfer, which is essential to the alternative redox mechanism.2 Acetylide, as a localized carbanion, is one of the most resistant to **an** electron transfer process, and the resistance of 1,2-dithiolane to one-electron reduction in the absence of transition metals have been well documented. **l3** Thus the observed S-S cleavage by acetylide would be a normal S_N2 type reaction similar to the S-S cleavage of linear disulfides by stable carbanions¹⁴ without any electron transfer or radical process. Thus, we can conclude that the 1,2-dithiolane ring of $Lip-E₂$ is cleaved by stable carbon nucleophiles even if any redox process is prohibited.

Received, 12th June 1995; *Corn. 5103783B*

References

- 1 L. Teuber, *SulfurRep.,* 1990,9,257; L. J. **Reed,Acc.** *Chem. Res.,* 1973, 7, 40; N. Isenberg and M. Grdinic, *J. Chem. Educ.,* 1972, 49, 392; U. Schmidt, P. Grafen, K. Altland and H. **W.** Goedde, *Adv. Enzymol. Relat. Areas Mol. Biol.,* 1969,32,423; L. J. Reed, *Organic Sulfur Compounds,* ed. **N.** Kharasch, Pergamon Press, 1961, pp. 443-452.
- **2** M. *L.* Das, M. Koike and L. J. Reed, *Proc. Natl. Acad. Sci. USA,* 1961, 47, 753.
- 3 R. Breslow, *Ann. N. Y. Acad. Sci.,* 1962,98, 445; F. *G.* White and L. L. Ingraham,J.Am. *Chem.* Soc., 1962,84, 3109.
- 4 **K.** J. Gruys, **A.** Datta and P. A. Frey, *Biochemistry,* 1989, 28, 9071.
- 5 D. S. Flournoy and P. A. Frey, *Biochemistry,* 1986, 25, 6036; C. **A.** CaJacob, G. R. Gavino and P. A. Frey, *J. Biol. Chem.,* 1985, 260, 14610.
- 6 **W.** H. Rastetter and **J.** Adams, *J. Org. Chem.,* 1981, 46, 1882; E. H. Smith, *J. Chem.* Soc., *Perkin Trans. I,* 1984, 523.
- 7 S. Sunner, *Nature* 1955, 176, 217; **A.** Fava, A. Iliceto and E. Camera, *J. Am. Chem.* Soc., 1957,79,833; R. Singh and G. M. Whitesides,J. *Am. Chem. Soc.,* 1990, 112, 6304.
- 8 M. Tazaki, H. Tanabe, **S.** Nagahama and M. Takagi, *J. Chem.* Soc., *Chem. Commun.,* 1994,291; M. Tazaki, S. Nagahama and M. Takagi, *Chem. Lett.,* 1988, 1339.
- 9 F. G. Bordwell, A. V. Satish, F. Jordan, C. B. Rios and **A.** C. Ching, *J. Am. Chem.* Soc., 1990, 112, 792; R. Kluger, *Chem. Rev.,* 1987, 87, 863.
- 10 **A.** Streitwieser, Jr. and D. M. E. Reuben, *J. Am. Chem. SOC.,* 1971, 93, 1794.
- 11 M. Hesse, *Ring Enlargement in Organic Chemistry,* VCH, 1991.
- 12 D. J. Ager, *Umpoled Synthons,* ed. T. A. Hase, Wiley-Interscience, 1987, pp. 56-57; R. R. Schmidt and B. Schmid, *Tetrahedron Lett.,* 1977, 3583; K. Saigo, Y. Hashimoto, L. Fang and M. Hasegawa, *Heterocycles,* 1989, 29,2079.
- 13 **J.** K. Howie, J. J. Houts and D. T. Sawyer, *J. Am. Chem. SOC.,* 1977, 99, 6323; *Z.* Shaked, J. J. Barber and G. M. Whitesides, *J. Org. Chem.,* 1981, 46, 4101; P. **S.** Surdhar and D. A. Armstrong, *J. Phys. Chem.,* 1987,91,6532.
- **14** H. F. Gilbert, *J. Am. Chem.* **SOC.,** 1980,102,7059; W. **A.** Pryor and K. Smith, *J. Am. Chem.* Soc., 1970, 92, 2732.